Borel Conjecture and dual Borel Conjecture (and other variants of the Borel Conjecture)

Wolfgang Wohofsky

Vienna University of Technology (TU Wien)
and
Kurt Gödel Research Center, Vienna (KGRC)

> wolfgang.wohofsky@gmx.at

Winter School in Abstract Analysis, section Set Theory Hejnice, Czech Republic, 29th Jan - 5th Feb 2011

Outline of the talk

- Small sets of real numbers
- Real numbers, topology, measure, algebraic structure
- Meager, measure zero, strong measure zero, Borel Conjecture (BC)
- Sets which can be translated away from an ideal \mathcal{J}
- \mathcal{J}^{\star}, strongly meager, dual Borel Conjecture (dBC)
- Main theorem: Con $(B C+d B C)$
- Another variant of the Borel Conjecture
- Marczewski ideal $s_{0}, s_{0}{ }^{\star}$, "Marczewski Borel Conjecture" (MBC)
- "Sacks dense ideals", perfectly meager sets, Con(MBC)?

Small sets of real numbers

- Small sets of real numbers
- Real numbers, topology, measure, algebraic structure
- Meager, measure zero, strong measure zero, Borel Conjecture (BC)
- Sets which can be translated away from an ideal \mathcal{J}
- \mathcal{J}^{\star}, strongly meager, dual Borel Conjecture (dBC)
- Main theorem: $\operatorname{Con}(B C+d B C)$
- Another variant of the Borel Conjecture
- Marczewski ideal $s_{0}, s_{0}{ }^{\star}$, "Marczewski Borel Conjecture" (MBC)
- "Sacks dense ideals", perfectly meager sets, Con(MBC)?

The real numbers: topology, measure, algebraic structure

The real numbers ("the reals")

- \mathbb{R}, the classical real line (connected, but not compact)
- $[0,1]$, the compact unit interval (connected, compact)
- ω^{ω}, the Baire space (totally disconnected, not compact)
- 2^{ω}, the Cantor space (totally disconnected, compact)
- $\mathcal{P}(\omega)$, equivalent to Cantor space via characteristic functions

> Structure on the reals:
> - natural topology (basic clopen sets/intervals form a basis)
> - standard (Lebesgue) measure (equals length for intervals)
> - group structure
> - e.g., $\left(2^{\omega},+\right)$ is a topological group, with + bitwise

The real numbers: topology, measure, algebraic structure

The real numbers ("the reals")

- \mathbb{R}, the classical real line (connected, but not compact)
- $[0,1]$, the compact unit interval (connected, compact)
- ω^{ω}, the Baire space (totally disconnected, not compact)
- 2^{ω}, the Cantor space (totally disconnected, compact)
- $\mathcal{P}(\omega)$, equivalent to Cantor space via characteristic functions

Structure on the reals:

- natural topology (basic clopen sets/intervals form a basis)
- standard (Lebesgue) measure (equals length for intervals)
- group structure
- e.g., $\left(2^{\omega},+\right)$ is a topological group, with + bitwise

Two classical ideals: \mathcal{M} and \mathcal{N}

$\mathcal{I} \subseteq \mathcal{P}(\mathbb{R})$ is an ideal if it is closed under subsets and finite unions; if an ideal is closed under countable unions, it is called σ-ideal.

A set $X \subseteq \mathbb{R}$ is nowhere dense if its closure has empty interior $\left(\bar{X}^{\circ}=\emptyset\right)$. The nowhere dense sets form an ideal (but not a σ-ideal).

Definition

A set $X \subseteq \mathbb{R}$ is meager $(X \in \mathcal{M})$ iff it is contained in the union of
countably many (closed) nowhere dense sets.
Both

- the family M of meager sets and
- the family \mathcal{N} of Lebesgue measure zero sets
form a (non-trivial) translation-invariant σ-ideal

Two classical ideals: \mathcal{M} and \mathcal{N}

$\mathcal{I} \subseteq \mathcal{P}(\mathbb{R})$ is an ideal if it is closed under subsets and finite unions; if an ideal is closed under countable unions, it is called σ-ideal.

A set $X \subseteq \mathbb{R}$ is nowhere dense if its closure has empty interior $\left(\bar{X}^{\circ}=\emptyset\right)$. The nowhere dense sets form an ideal (but not a σ-ideal).

Definition

A set $X \subseteq \mathbb{R}$ is meager $(X \in \mathcal{M})$ iff it is contained in the union of countably many (closed) nowhere dense sets.

Both

- the family \mathcal{M} of meager sets and
- the family \mathcal{N} of Lebesgue measure zero sets
form a (non-trivial) translation-invariant σ-ideal

Two classical ideals: \mathcal{M} and \mathcal{N}

$\mathcal{I} \subseteq \mathcal{P}(\mathbb{R})$ is an ideal if it is closed under subsets and finite unions; if an ideal is closed under countable unions, it is called σ-ideal.

A set $X \subseteq \mathbb{R}$ is nowhere dense if its closure has empty interior $\left(\bar{X}^{\circ}=\emptyset\right)$. The nowhere dense sets form an ideal (but not a σ-ideal).

Definition

A set $X \subseteq \mathbb{R}$ is meager $(X \in \mathcal{M})$ iff it is contained in the union of countably many (closed) nowhere dense sets.

Both

- the family \mathcal{M} of meager sets and
- the family \mathcal{N} of Lebesgue measure zero sets form a (non-trivial) translation-invariant σ-ideal.

Measure zero and strong measure zero sets

For an interval $I \subseteq \mathbb{R}$, let $\lambda(I)$ denote its length.

Definition (well-known)

A set $X \subseteq \mathbb{R}$ is (Lebesgue) measure zero $(X \in \mathcal{N})$ iff for each positive real number $\varepsilon>0$
there is a sequence of intervals $\left(I_{n}\right)_{n<\omega}$ of total length $\sum_{n<\omega} \lambda\left(I_{n}\right) \leq \varepsilon$ such that $X \subseteq \bigcup_{n<\omega} I_{n}$.

Definition (Borel; 1919)

A set $X \subseteq \mathbb{R}$ is strong measure zero $(X \in S \mathcal{N})$ iff
for each sequence of positive real numbers
there is a sequence of intervals $\left(I_{n}\right)_{n<\omega}$ with $\forall n \in \omega \lambda\left(I_{n}\right)$
such that $X \subseteq \bigcup_{n<\omega} I_{n}$

Measure zero and strong measure zero sets

For an interval $I \subseteq \mathbb{R}$, let $\lambda(I)$ denote its length.

Definition (well-known)

A set $X \subseteq \mathbb{R}$ is (Lebesgue) measure zero $(X \in \mathcal{N})$ iff for each positive real number $\varepsilon>0$
there is a sequence of intervals $\left(I_{n}\right)_{n<\omega}$ of total length $\sum_{n<\omega} \lambda\left(I_{n}\right) \leq \varepsilon$ such that $X \subseteq \bigcup_{n<\omega} I_{n}$.

Definition (Borel; 1919)

A set $X \subseteq \mathbb{R}$ is strong measure zero $(X \in \mathcal{S N})$ iff for each sequence of positive real numbers $\left(\varepsilon_{n}\right)_{n<\omega}$ there is a sequence of intervals $\left(I_{n}\right)_{n<\omega}$ with $\forall n \in \omega \lambda\left(I_{n}\right) \leq \varepsilon_{n}$ such that $X \subseteq \bigcup_{n<\omega} I_{n}$.

Properties of strong measure zero sets

Definition (from previous slide)

A set $X \subseteq \mathbb{R}$ is strong measure zero $(X \in \mathcal{S N})$ iff for each sequence of positive real numbers $\left(\varepsilon_{n}\right)_{n<\omega}$ there is a sequence of intervals $\left(I_{n}\right)_{n<\omega}$ with $\forall n \in \omega \lambda\left(I_{n}\right) \leq \varepsilon_{n}$ such that $X \subseteq \bigcup_{n<\omega} I_{n}$.

- $\mathcal{S N} \subseteq \mathcal{N}$: each strong measure zero set is measure zero
- $[\mathbb{R}]^{\leq \omega} \subseteq \mathcal{S N}$: each countable set is strong measure zero
- $\mathcal{S N}$ is a translation-invariant σ-ideal
- A (non-empty) perfect set cannot be strong measure zero, hence - $\mathcal{S N} \varsubsetneqq \mathcal{N}$ (think of the classical Cantor set $\subseteq[0,1]$) - there are no uncountable Borel sets in $\mathcal{S N}$

> Question: Are there uncountable strong measure zero sets?

Properties of strong measure zero sets

Definition (from previous slide)

A set $X \subseteq \mathbb{R}$ is strong measure zero $(X \in \mathcal{S N})$ iff for each sequence of positive real numbers $\left(\varepsilon_{n}\right)_{n<\omega}$ there is a sequence of intervals $\left(I_{n}\right)_{n<\omega}$ with $\forall n \in \omega \lambda\left(I_{n}\right) \leq \varepsilon_{n}$ such that $X \subseteq \bigcup_{n<\omega} I_{n}$.

- $\mathcal{S N} \subseteq \mathcal{N}$: each strong measure zero set is measure zero
- $[\mathbb{R}]^{\leq \omega} \subseteq \mathcal{S N}$: each countable set is strong measure zero
- $\mathcal{S N}$ is a translation-invariant σ-ideal
- A (non-empty) perfect set cannot be strong measure zero, hence
- $\mathcal{S N} \varsubsetneqq \mathcal{N}$ (think of the classical Cantor set $\subseteq[0,1])$
- there are no uncountable Borel sets in $\mathcal{S N}$

Question: Are there uncountable strong measure zero sets?

Properties of strong measure zero sets

Definition (from previous slide)

A set $X \subseteq \mathbb{R}$ is strong measure zero $(X \in \mathcal{S N})$ iff for each sequence of positive real numbers $\left(\varepsilon_{n}\right)_{n<\omega}$ there is a sequence of intervals $\left(I_{n}\right)_{n<\omega}$ with $\forall n \in \omega \lambda\left(I_{n}\right) \leq \varepsilon_{n}$ such that $X \subseteq \bigcup_{n<\omega} I_{n}$.

- $\mathcal{S N} \subseteq \mathcal{N}$: each strong measure zero set is measure zero
- $[\mathbb{R}]^{\leq \omega} \subseteq \mathcal{S N}$: each countable set is strong measure zero
- $\mathcal{S N}$ is a translation-invariant σ-ideal
- A (non-empty) perfect set cannot be strong measure zero, hence
- $\mathcal{S N} \varsubsetneqq \mathcal{N}$ (think of the classical Cantor set $\subseteq[0,1]$)
- there are no uncountable Borel sets in $\mathcal{S N}$

Question: Are there uncountable strong measure zero sets?

The Borel Conjecture (BC)

Definition

The Borel Conjecture (BC) is the statement that there are no uncountable strong measure zero sets, i.e., $\mathcal{S N}=[\mathbb{R}]^{\leq \omega}$.

Proposition
 \square

Proof (Sketch).

- A Luzin set is an uncountable set
whose intersection with any meager set is countable
- Assuming CH, we can inductively construct a Luzin set
- Fvery Iuzin set is strong measure zero

The Borel Conjecture (BC)

Definition

The Borel Conjecture (BC) is the statement that there are no uncountable strong measure zero sets, i.e., $\mathcal{S N}=[\mathbb{R}]^{\leq \omega}$.

Proposition

$\mathrm{CH}\left(\right.$ i.e., $\left.2^{\aleph_{0}}=\aleph_{1}\right)$ implies $\neg \mathrm{BC}$.

Proof (Sketch).

- A Luzin set is an uncountable set
whose intersection with any meager set is countable
- Assuming CH, we can inductively construct a Luzin set
- Every Luzin set is strong measure zero.

The Borel Conjecture (BC)

Definition

The Borel Conjecture (BC) is the statement that there are no uncountable strong measure zero sets, i.e., $\mathcal{S N}=[\mathbb{R}]^{\leq \omega}$.

Proposition

$\mathrm{CH}\left(\right.$ i.e., $\left.2^{\aleph_{0}}=\aleph_{1}\right)$ implies $\neg \mathrm{BC}$.

Proof (Sketch).

- A Luzin set is an uncountable set whose intersection with any meager set is countable.
- Assuming CH, we can inductively construct a Luzin set.
- Every Luzin set is strong measure zero.

The consistency of the Borel Conjecture

In 1976, Laver invented the method of countable support forcing iteration to prove Con(BC), the consistency of the Borel Conjecture:

Theorem (Laver; 1976)
There is a model of ZFC where the Borel Conjecture holds. More precisely, the Borel Conjecture can be obtained by a countable support iteration of Laver forcing of length ω_{2}.

The consistency of the Borel Conjecture

In 1976, Laver invented the method of countable support forcing iteration to prove Con (BC), the consistency of the Borel Conjecture:

Theorem (Laver; 1976)
There is a model of ZFC where the Borel Conjecture holds. More precisely, the Borel Conjecture can be obtained by a countable support iteration of Laver forcing of length ω_{2}.

Key points.

- it is necessary to add many dominating reals ("fast decreasing ε_{n} 's")
- it is forbidden to add Cohen reals (this inevitably destroys BC)

Sets which can be translated away from an ideal \mathcal{J}

- Small sets of real numbers
- Real numbers, topology, measure, algebraic structure
- Meager, measure zero, strong measure zero, Borel Conjecture (BC)
- Sets which can be translated away from an ideal \mathcal{J}
- \mathcal{J}^{\star}, strongly meager, dual Borel Conjecture (dBC)
- Main theorem: Con $(B C+d B C)$
- Another variant of the Borel Conjecture
- Marczewski ideal $s_{0}, s_{0}{ }^{\star}$, "Marczewski Borel Conjecture" (MBC)
- "Sacks dense ideals", perfectly meager sets, Con(MBC)?

Equivalent characterization of strong measure zero sets

For $X, Y \subseteq \mathbb{R}$, let $X+Y=\{x+y: x \in X, y \in Y\}$.

Key Theorem (Galvin,Mycielski,Solovay; 1973)

A set $X \subseteq \mathbb{R}$ is strong measure zero if and only if for every meager set $M \in \mathcal{M}, X+M \neq \mathbb{R}$.

Note that $X+M \neq \mathbb{R}$ if and only if X can be "translated away" from M, i.e., there exists a $t \in \mathbb{R}$ such that $(X+t) \cap M=\emptyset$.

Equivalent characterization of strong measure zero sets

For $X, Y \subseteq \mathbb{R}$, let $X+Y=\{x+y: x \in X, y \in Y\}$.

Key Theorem (Galvin,Mycielski,Solovay; 1973)

A set $X \subseteq \mathbb{R}$ is strong measure zero if and only if for every meager set $M \in \mathcal{M}, X+M \neq \mathbb{R}$.

Note that $X+M \neq \mathbb{R}$ if and only if X can be "translated away" from M, i.e., there exists a $t \in \mathbb{R}$ such that $(X+t) \cap M=\emptyset$.

Proof of the easy direction.

- Given $\left(\varepsilon_{n}\right)_{n<\omega}$, let $D:=\bigcup_{n<\omega}\left(q_{n}-\frac{\varepsilon_{n}}{2}, q_{n}+\frac{\varepsilon_{n}}{2}\right)\left(q_{n}\right.$ the rationals).
- D is dense, so $M:=\mathbb{R} \backslash D$ is (closed) nowhere dense, hence meager.
- So there is a t such that $(X+t) \cap M=\emptyset$, so $(X+t) \subseteq D$.

\mathcal{J}-shiftable sets $\left(\mathcal{J}^{\star}\right)$

Key Definition

Let $\mathcal{J} \subseteq \mathcal{P}\left(2^{\omega}\right)$ be arbitrary. Define

$$
\mathcal{J}^{\star}:=\left\{Y \subseteq 2^{\omega}: Y+Z \neq 2^{\omega} \text { for every set } Z \in \mathcal{J}\right\} .
$$

\mathcal{J}^{\star} is the collection of " \mathcal{J}-shiftable sets",
i.e., $Y \in \mathcal{J}^{\star}$ iff Y can be translated away from every set in \mathcal{J}.

\mathcal{J}-shiftable sets $\left(\mathcal{J}^{\star}\right)$

Key Definition

Let $\mathcal{J} \subseteq \mathcal{P}\left(2^{\omega}\right)$ be arbitrary. Define

$$
\mathcal{J}^{\star}:=\left\{Y \subseteq 2^{\omega}: Y+Z \neq 2^{\omega} \text { for every set } Z \in \mathcal{J}\right\} .
$$

\mathcal{J}^{\star} is the collection of " \mathcal{J}-shiftable sets",
i.e., $Y \in \mathcal{J}^{\star}$ iff Y can be translated away from every set in \mathcal{J}.

Fact ("Galois connection")

Let $\mathcal{A}, \mathcal{B} \subseteq \mathcal{P}\left(2^{\omega}\right)$ be arbitrary.

- $\mathcal{A} \subseteq \mathcal{B} \Longrightarrow \mathcal{A}^{\star} \supseteq \mathcal{B}^{\star}$
- $\mathcal{A} \subseteq \mathcal{A}^{\star \star}$
- $\mathcal{A}^{\star}=\mathcal{A}^{\star \star \star}$

Strongly meager sets

Key Definition (from previous slide)

Let $\mathcal{J} \subseteq \mathcal{P}\left(2^{\omega}\right)$ be arbitrary. Define

$$
\mathcal{J}^{\star}:=\left\{Y \subseteq 2^{\omega}: Y+Z \neq 2^{\omega} \text { for every set } Z \in \mathcal{J}\right\} .
$$

By the "key theorem" of Galvin, Mycielski and Solovay, we have

Fact

A set Y is strong measure zero if and only if it is "M-shiftable", i.e.,

$$
\mathcal{S N}=\mathcal{M}^{\star}
$$

By replacing \mathcal{M} by \mathcal{N} we get a notion dual to strong measure zero:

Definition

A set Y is strongly meager $(Y \in S M)$ iff it is " N-shiftable", i.e.

Strongly meager sets

Key Definition (from previous slide)

Let $\mathcal{J} \subseteq \mathcal{P}\left(2^{\omega}\right)$ be arbitrary. Define

$$
\mathcal{J}^{\star}:=\left\{Y \subseteq 2^{\omega}: Y+Z \neq 2^{\omega} \text { for every set } Z \in \mathcal{J}\right\} .
$$

By the "key theorem" of Galvin, Mycielski and Solovay, we have

Fact

A set Y is strong measure zero if and only if it is " \mathcal{M}-shiftable", i.e.,

$$
\mathcal{S N}=\mathcal{M}^{\star}
$$

By replacing \mathcal{M} by \mathcal{N} we get a notion dual to strong measure zero:

Definition

A set Y is strongly meager $(Y \in \mathcal{S M})$ iff it is " \mathcal{N}-shiftable", i.e.,

$$
\mathcal{S M}:=\mathcal{N}^{\star}
$$

Properties of strongly meager sets

Definition (from previous slide)

A set Y is strongly meager $(Y \in \mathcal{S M})$ iff it is " \mathcal{N}-shiftable", i.e., $\mathcal{S M}:=\mathcal{N}^{\star}$

- $\mathcal{S M} \subseteq \mathcal{M}:$ each strongly meager set is meager
- the reals can be partitioned into a measure zero and a meager part
- $Y \in \mathcal{S M}$ can be translated into the meager part of this partition - so the name is justified ;-)
- $\left[2^{\omega}\right]^{<\omega} \subseteq \mathcal{S M}:$ each countable set is strongly meager - this is because \mathcal{N} is a translation-invariant σ-ideal
- $S M$ is translation-invariant, but (in general) it is NOT even an ideal Question: Are there uncountable strongly meager sets?

Properties of strongly meager sets

Definition (from previous slide)

A set Y is strongly meager $(Y \in \mathcal{S} \mathcal{M})$ iff it is " \mathcal{N}-shiftable", i.e.,

$$
\mathcal{S M}:=\mathcal{N}^{\star}
$$

- $\mathcal{S M} \subseteq \mathcal{M}$: each strongly meager set is meager
- the reals can be partitioned into a measure zero and a meager part
- $Y \in \mathcal{S} \mathcal{M}$ can be translated into the meager part of this partition
- so the name is justified ;-)
- $\left[2^{\omega}\right]^{\leq \omega} \subseteq \mathcal{S M}$: each countable set is strongly meager
- this is because \mathcal{N} is a translation-invariant σ-ideal
- $\mathcal{S M}$ is translation-invariant, but (in general) it is NOT even an ideal

Question: Are there uncountable strongly meager sets?

Properties of strongly meager sets

Definition (from previous slide)

A set Y is strongly meager $(Y \in \mathcal{S} \mathcal{M})$ iff it is " \mathcal{N}-shiftable", i.e.,

$$
\mathcal{S M}:=\mathcal{N}^{\star}
$$

- $\mathcal{S M} \subseteq \mathcal{M}$: each strongly meager set is meager
- the reals can be partitioned into a measure zero and a meager part
- $Y \in \mathcal{S} \mathcal{M}$ can be translated into the meager part of this partition
- so the name is justified ;-)
- $\left[2^{\omega}\right]^{\leq \omega} \subseteq \mathcal{S M}$: each countable set is strongly meager
- this is because \mathcal{N} is a translation-invariant σ-ideal
- $\mathcal{S M}$ is translation-invariant, but (in general) it is NOT even an ideal

Question: Are there uncountable strongly meager sets?

The dual Borel Conjecture (dBC)

Definition

The dual Borel Conjecture (dBC) is the statement that there are no uncountable strongly meager sets, i.e., $\mathcal{S M}=\left[2^{\omega}\right] \leq \omega$.

Also dBC fails under CH . On the other hand, Carlson showed Con(dBC)

Theorem (Carlson; 1993)

The dual Borel Conjecture can be obtained by a finite support iteration of Cohen forcing of length ω_{2}

Key points.
 - Cohen re:ls are the canonical method to kill strongly meager sets
 - A strengthening of the c.c.c. ("precaliber \aleph_{1} ") is used
 to avoid the resurrection of unwanted sets.

The dual Borel Conjecture (dBC)

Definition

The dual Borel Conjecture (dBC) is the statement that there are no uncountable strongly meager sets, i.e., $\mathcal{S M}=\left[2^{\omega}\right]^{\leq \omega}$.

Also dBC fails under CH. On the other hand, Carlson showed Con(dBC):

Theorem (Carlson; 1993)

The dual Borel Conjecture can be obtained by a finite support iteration of Cohen forcing of length ω_{2}.

The dual Borel Conjecture (dBC)

Definition

The dual Borel Conjecture (dBC) is the statement that there are no uncountable strongly meager sets, i.e., $\mathcal{S M}=\left[2^{\omega}\right]^{\leq \omega}$.

Also dBC fails under CH. On the other hand, Carlson showed Con(dBC):

Theorem (Carlson; 1993)

The dual Borel Conjecture can be obtained by a finite support iteration of Cohen forcing of length ω_{2}.

Key points.

- Cohen reals are the canonical method to kill strongly meager sets.
- A strengthening of the c.c.c. ("precaliber \aleph_{1} ") is used to avoid the resurrection of unwanted sets.

The main theorem: $\operatorname{Con}(\mathrm{BC}+\mathrm{dBC})$

What about BC and dBC in the same model?

One of the obstacles in proving it:

- have to kill strongly meager sets to get the dual Borel Conjecture
- the standard way is adding Cohen reals
- but Cohen reals inevitably destroy the Borel Conjecture
- we have to kill strongly meager sets without adding Cohen reals
- this is possible, but very difficult

Theorem (Goldstern, Kellner,Shelah, W.; 2011+ع)
 There is a model of ZFC in which both the Borel Conjecture and the dual Borel Conjecture hold, i.e., Con(BC + dBC)

The main theorem: $\mathrm{Con}(\mathrm{BC}+\mathrm{dBC})$

What about BC and dBC in the same model?
One of the obstacles in proving it:

- have to kill strongly meager sets to get the dual Borel Conjecture
- the standard way is adding Cohen reals
- but Cohen reals inevitably destroy the Borel Conjecture
- we have to kill strongly meager sets without adding Cohen reals
- this is possible, but very difficult

Theorem (Goldstern, Kellner,Shelah, W
 There is a model of ZFC in which both the Borel Conjecture and the dual Borel Conjecture hold, i.e., Con(BC +dBC).

The main theorem: $\mathrm{Con}(\mathrm{BC}+\mathrm{dBC})$

What about BC and dBC in the same model?
One of the obstacles in proving it:

- have to kill strongly meager sets to get the dual Borel Conjecture
- the standard way is adding Cohen reals
- but Cohen reals inevitably destroy the Borel Conjecture
- we have to kill strongly meager sets without adding Cohen reals
- this is possible, but very difficult

Theorem
 There is a model of ZFC in which both the Borel Conjecture and the dual Borel Conjecture hold, i.e., Con(BC +dBC).

The main theorem: $\mathrm{Con}(\mathrm{BC}+\mathrm{dBC})$

What about BC and dBC in the same model?
One of the obstacles in proving it:

- have to kill strongly meager sets to get the dual Borel Conjecture
- the standard way is adding Cohen reals
- but Cohen reals inevitably destroy the Borel Conjecture
- we have to kill strongly meager sets without adding Cohen reals
- this is possible, but very difficult

Theorem (Goldstern,Kellner,Shelah,W.; 2011+ ε)

There is a model of ZFC in which both the Borel Conjecture and the dual Borel Conjecture hold, i.e., Con($B C+d B C$).

Small subsets of the real line and generalizations of the Borel Conjecture Wolfgang Wohofsky (advisor: Martin Goldstern)

Recipient of a DOC-fellowship of the Austrian Academy of Sciences at the Institute of Discrete Mathematics and Geometry 20.022016

Small sets of real numbers

Even smaller sets and the (dual) Borel Conjecture

Shelah's oracle c.c.c. forcing

ground model: $2^{\aleph_{0}}=\aleph_{1}$

Sets which can be translated away from an ideal \mathcal{J} The main theorem: Con $(\mathrm{BC}+\mathrm{dBC})$

The main theorem: Con $(B C+d B C)$

Theorem (Goldstern,Kellner,Shelah,W.; 2011+ ε)

There is a model of ZFC in which both the Borel Conjecture and the dual Borel Conjecture hold, i.e., Con ($\mathrm{BC}+\mathrm{dBC}$).

```
We force with }\mathbb{R}*\mp@subsup{\mathbb{P}}{\mp@subsup{\omega}{2}{}}{}\mathrm{ , where
    - \mathbb{R}}\mathrm{ is the preparatory forcing
        * a condition in }\mathbb{R}\mathrm{ consists of
        \star a (not quite transitive) countable model M
        * an iteration ( (\mp@subsup{\mathbb{P}}{}{M},\mp@subsup{\overline{\mathbb{Q}}}{}{M})\mathrm{ in M}
    * to get a stronger condition
        * "enlarge" the model
        \star find an iteration into which the old one "canonically" embeds
    * \sigma-closed,
```



```
        - each }\mp@subsup{\mathbb{Q}}{\alpha}{}\mathrm{ is the union of the }\mp@subsup{\mathbb{Q}}{\alpha}{M}\mathrm{ 's from the generic G}\subseteq\mathbb{R
        * "generic support" (neither countable nor finite)
```


The main theorem: $\mathrm{Con}(\mathrm{BC}+\mathrm{dBC})$

Theorem (Goldstern,Kellner,Shelah,W.; 2011+ ε)

There is a model of ZFC in which both the Borel Conjecture and the dual Borel Conjecture hold, i.e., Con ($\mathrm{BC}+\mathrm{dBC}$).

We force with $\mathbb{R} * \mathbb{P}_{\omega_{2}}$, where

- \mathbb{R} is the preparatory forcing
- a condition in \mathbb{R} consists of
\star a (not quite transitive) countable model M
* an iteration ($\overline{\mathbb{P}}^{M}, \overline{\mathbb{Q}}^{M}$) in M
- to get a stronger condition * "enlarge" the model * find an iteration into which the old one "canonically" embeds
$\Rightarrow \sigma$-closed, \aleph_{2}-c.c.
adding the "generic" forcing iteration $(\overline{\mathbb{P}}, \overline{\mathbb{Q}})$ with limit $\mathbb{P}_{\omega_{2}}$
- each \mathbb{Q}_{α} is the union of the \mathbb{Q}_{α}^{M} 's from the generic $G \subseteq \mathbb{R}$
- "generic support" (neither countable nor finite)

The main theorem: $\mathrm{Con}(\mathrm{BC}+\mathrm{dBC})$

Theorem (Goldstern, Kellner,Shelah,W.; 2011+ ε)

There is a model of ZFC in which both the Borel Conjecture and the dual Borel Conjecture hold, i.e., Con($B C+d B C$).

We force with $\mathbb{R} * \mathbb{P}_{\omega_{2}}$, where

- \mathbb{R} is the preparatory forcing
- a condition in \mathbb{R} consists of
\star a (not quite transitive) countable model M
* an iteration ($\overline{\mathbb{P}}^{M}, \overline{\mathbb{Q}}^{M}$) in M
- to get a stronger condition
» "enlarge" the model
« find an iteration into which the old one "canonically" embeds
- σ-closed, \aleph_{2}-c.c
adding the "generic" forcing iteration ($\overline{\mathbb{P}}, \overline{\mathbb{Q}}$) with limit $\mathbb{P}_{\omega_{2}}$
- each \mathbb{Q}_{α} is the union of the \mathbb{Q}_{α}^{M} 's from the generic $G \subseteq \mathbb{R}$
- "generic support" (neither countable nor finite)

The main theorem: $\operatorname{Con}(B C+d B C)$

Theorem (Goldstern, Kellner,Shelah,W.; 2011+ ε)

There is a model of ZFC in which both the Borel Conjecture and the dual Borel Conjecture hold, i.e., Con($B C+d B C$).

We force with $\mathbb{R} * \mathbb{P}_{\omega_{2}}$, where

- \mathbb{R} is the preparatory forcing
- a condition in \mathbb{R} consists of
\star a (not quite transitive) countable model M
* an iteration ($\overline{\mathbb{P}}^{M}, \overline{\mathbb{Q}}^{M}$) in M
- to get a stronger condition
\star "enlarge" the model
\star find an iteration into which the old one "canonically" embeds
- σ-closed, \aleph_{2}-c.c.
- ... adding the forcing iteration $(\overline{\mathbb{P}}, \overline{\mathbb{Q}})$ with limit $\mathbb{P}_{\omega_{2}}$
- each \mathbb{Q}_{α} is the union of the \mathbb{Q}_{α}^{M} 's from the generic $G \subseteq \mathbb{R}$
- "generic sunport" (neither countable nor finite)

The main theorem: $\operatorname{Con}(B C+d B C)$

Theorem (Goldstern, Kellner,Shelah,W.; 2011+ ε)

There is a model of ZFC in which both the Borel Conjecture and the dual Borel Conjecture hold, i.e., Con ($\mathrm{BC}+\mathrm{dBC}$).

We force with $\mathbb{R} * \mathbb{P}_{\omega_{2}}$, where

- \mathbb{R} is the preparatory forcing
- a condition in \mathbb{R} consists of
\star a (not quite transitive) countable model M
\star an iteration ($\left.\overline{\mathbb{P}}^{M}, \overline{\mathbb{Q}}^{M}\right)$ in M
- to get a stronger condition
\star "enlarge" the model
\star find an iteration into which the old one "canonically" embeds
- σ-closed, \aleph_{2}-c.c.
- ... adding the "generic" forcing iteration $(\overline{\mathbb{P}}, \overline{\mathbb{Q}})$ with limit $\mathbb{P}_{\omega_{2}}$
- each \mathbb{Q}_{α} is the union of the \mathbb{Q}_{\sim}^{M} 's from the generic $G \subseteq \mathbb{R}$
- "generic support" (neither countable nor finite)
- c.c.c. !!!

The forcings \mathbb{Q}_{α} involved

Definition (Ultralaver forcing, α even)

. . . is similar to Laver forcing:

- each condition is a Laver tree
- it has a stem
- above the stem it splits "according to a family of ultrafilters on ω "

Random forcing

The forcings \mathbb{Q}_{α} involved

Definition (Ultralaver forcing, α even)

. . . is similar to Laver forcing:

- each condition is a Laver tree
- it has a stem
- above the stem it splits "according to a family of ultrafilters on ω "

Definition (Janus forcing, α odd)

Cohen forcing

Random forcing

Cohen versions and Random versions are "generically intertwined"...

Obtaining $\mathrm{BC} / \mathrm{dBC}$ in the final model $V^{\mathbb{R} * \mathbb{P}_{\omega_{2}}}$

```
Theorem (Pawlikowski; 1993)
Let \(X \subseteq 2^{\omega}\). Then \(X\) is strong measure zero if and only if \(X+F\) is null for every closed measure zero set \(F\).
```


To obtain the Borel Conjecture:

- kill uncountable strong measure zero sets X (by Ultralaver forcing) - witnessed by closed measure zero set F with
- prevent resurrection: show (down in M) that X-F remains positive * Ultralaver forcing (can be made to) "preserve positivity' - in "Janus steps", "look at" Random version which preserves positivity - use "almost countable support limits" to "preserve preservation"

To obtain the dual Borel Conjecture:

- kill uncountable strongly meager sets (by Janus forcing, Cohen-like)
- prevent resurrection: show (down in M) that everything is σ-centered
- Ultralaver forcing always is, "look at" Cohen version of Janus forcing
- use "almost finite support limits" to preserve σ-centered

Obtaining $\mathrm{BC} / \mathrm{dBC}$ in the final model $V^{\mathbb{R} * \mathbb{P}_{\omega_{2}}}$

```
Theorem (Pawlikowski; 1993)
Let \(X \subseteq 2^{\omega}\). Then \(X\) is strong measure zero if and only if \(X+F\) is null for every closed measure zero set \(F\).
```


To obtain the Borel Conjecture:

- kill uncountable strong measure zero sets X (by Ultralaver forcing)
- witnessed by closed measure zero set F with $X+F$ positive
- prevent resurrection: show (down in M) that $X+F$ remains positive
- Ultralaver forcing (can be made to) "preserve positivity"
- in "Janus steps", "look at" Random version which preserves positivity
> use "almost countable support limits" to "preserve preservation"
To obtain the dual Borel Conjecture:
- kill uncountable strongly meager sets (by Janus forcing, Cohen-like)
- prevent resurrection: show (down in M) that everything is σ-centered
- Ultralaver forcing always is, "look at" Cohen version of Janus forcing
- use "almost finite support limits" to preserve σ-centered

Obtaining $\mathrm{BC} / \mathrm{dBC}$ in the final model $V^{\mathbb{R} * \mathbb{P}_{\omega_{2}}}$

Theorem (Pawlikowski; 1993)

Let $X \subseteq 2^{\omega}$. Then X is strong measure zero if and only if $X+F$ is null for every closed measure zero set F.

To obtain the Borel Conjecture:

- kill uncountable strong measure zero sets X (by Ultralaver forcing)
- witnessed by closed measure zero set F with $X+F$ positive
- prevent resurrection: show (down in M) that $X+F$ remains positive
- Ultralaver forcing (can be made to) "preserve positivity"
- in "Janus steps", "look at" Random version which preserves positivity
- use "almost countable support limits" to "preserve preservation"

To obtain the dual Borel Conjecture:

- kill uncountable strongly meager sets (by Janus forcing, Cohen-like)
- prevent resurrection: show (down in M) that everything is σ-centered
- Ultralaver forcing always is, "look at" Cohen version of Janus forcing
- use "almost finite support limits" to preserve σ-centered

Obtaining $B C / d B C$ in the final model $V^{\mathbb{R} * \mathbb{P}_{\omega_{2}}}$

Theorem (Pawlikowski; 1993)

Let $X \subseteq 2^{\omega}$. Then X is strong measure zero if and only if $X+F$ is null for every closed measure zero set F.

To obtain the Borel Conjecture:

- kill uncountable strong measure zero sets X (by Ultralaver forcing)
- witnessed by closed measure zero set F with $X+F$ positive
- prevent resurrection: show (down in M) that $X+F$ remains positive
- Ultralaver forcing (can be made to) "preserve positivity"
- in "Janus steps", "look at" Random version which preserves positivity
- use "almost countable support limits" to "preserve preservation"

To obtain the dual Borel Conjecture:

- kill uncountable strongly meager sets (by Janus forcing, Cohen-like)
- prevent resurrection: show (down in M) that everything is σ-centered
- Ultralaver forcing always is, "look at" Cohen version of Janus forcing
- use "almost finite sunport limits" to preserve σ-centered

Obtaining $\mathrm{BC} / \mathrm{dBC}$ in the final model $V^{\mathbb{R} * \mathbb{P}_{\omega_{2}}}$

Theorem (Pawlikowski; 1993)

Let $X \subseteq 2^{\omega}$. Then X is strong measure zero if and only if $X+F$ is null for every closed measure zero set F.

To obtain the Borel Conjecture:

- kill uncountable strong measure zero sets X (by Ultralaver forcing)
- witnessed by closed measure zero set F with $X+F$ positive
- prevent resurrection: show (down in M) that $X+F$ remains positive
- Ultralaver forcing (can be made to) "preserve positivity"
- in "Janus steps", "look at" Random version which preserves positivity
- use "almost countable support limits" to "preserve preservation"

To obtain the dual Borel Conjecture:

- kill uncountable strongly meager sets (by Janus forcing, Cohen-like)
- prevent resurrection: show (down in M) that everything is σ-centered
- Ultralaver forcing always is, "look at" Cohen version of Janus forcing
- use "almost finite support limits" to preserve σ-centered

Another variant of the Borel Conjecture

- Small sets of real numbers
- Real numbers, topology, measure, algebraic structure
- Meager, measure zero, strong measure zero, Borel Conjecture (BC)
- Sets which can be translated away from an ideal \mathcal{J}
- \mathcal{J}^{\star}, strongly meager, dual Borel Conjecture (dBC)
- Main theorem: Con ($\mathrm{BC}+\mathrm{dBC}$)
- Another variant of the Borel Conjecture
- Marczewski ideal $s_{0}, s_{0}{ }^{\star}$, "Marczewski Borel Conjecture" (MBC)
- "Sacks dense ideals", perfectly meager sets, Con(MBC)?

The "Borel Conjecture" for arbitrary ideals \mathcal{J}

Recall the definition of \mathcal{J}^{\star} (for any $\mathcal{J} \subseteq \mathcal{P}\left(2^{\omega}\right)$):

$$
\mathcal{J}^{\star}:=\left\{Y \subseteq 2^{\omega}: Y+Z \neq 2^{\omega} \text { for every set } Z \in \mathcal{J}\right\} .
$$

From now on, assume that \mathcal{J} is a translation-invariant σ-ideal. Then

- $\left[2^{\omega}\right]^{\leq \omega} \subseteq \mathcal{J}^{\star}$: each countable set is \mathcal{J}-shiftable
- \mathcal{J}^{\star} is translation-invariant, but (in general) it is NOT even an ideal

Definition

The \mathcal{T}-Borel Conjecture (\mathcal{J}-BC) the statement that there are no uncountable \mathcal{J}-shiftable sets, i.e., $\mathcal{J}^{\star}=\left[2^{\omega}\right] \leq \omega$

- Borel Conjecture (BC)

- dual Borel Conjecture $(\mathrm{dBC}) \longleftrightarrow \mathcal{N}-\mathrm{BC} \Longleftrightarrow S M=\mathcal{N}^{*}=\left[2^{\omega}\right] \leq \omega$

The "Borel Conjecture" for arbitrary ideals \mathcal{J}

Recall the definition of \mathcal{J}^{\star} (for any $\mathcal{J} \subseteq \mathcal{P}\left(2^{\omega}\right)$):

$$
\mathcal{J}^{\star}:=\left\{Y \subseteq 2^{\omega}: Y+Z \neq 2^{\omega} \text { for every set } Z \in \mathcal{J}\right\} .
$$

From now on, assume that \mathcal{J} is a translation-invariant σ-ideal. Then

- $\left[2^{\omega}\right] \leq \omega \subseteq \mathcal{J}^{\star}$: each countable set is \mathcal{J}-shiftable
- \mathcal{J}^{\star} is translation-invariant, but (in general) it is NOT even an ideal

The "Borel Conjecture" for arbitrary ideals \mathcal{J}

Recall the definition of \mathcal{J}^{\star} (for any $\mathcal{J} \subseteq \mathcal{P}\left(2^{\omega}\right)$):

$$
\mathcal{J}^{\star}:=\left\{Y \subseteq 2^{\omega}: Y+Z \neq 2^{\omega} \text { for every set } Z \in \mathcal{J}\right\} .
$$

From now on, assume that \mathcal{J} is a translation-invariant σ-ideal. Then

- $\left[2^{\omega}\right]^{\leq \omega} \subseteq \mathcal{J}^{\star}$: each countable set is \mathcal{J}-shiftable
- \mathcal{J}^{\star} is translation-invariant, but (in general) it is NOT even an ideal

Definition

The \mathcal{J}-Borel Conjecture $(\mathcal{J}$-BC) the statement that there are no uncountable \mathcal{J}-shiftable sets, i.e., $\mathcal{J}^{\star}=\left[2^{\omega}\right]^{\leq \omega}$.

$$
\begin{array}{ll}
\text { - Borel Conjecture }(\mathrm{BC}) & \Longleftrightarrow \mathcal{M}-\mathrm{BC} \Longleftrightarrow \mathcal{S N}=\mathcal{M}^{\star}=\left[2^{\omega}\right]^{\leq \omega} \\
\text { - dual Borel Conjecture }(\mathrm{dBC}) & \Longleftrightarrow \mathcal{N}-\mathrm{BC} \Longleftrightarrow \mathcal{S M}=\mathcal{N}^{\star}=\left[2^{\omega}\right]^{\leq \omega}
\end{array}
$$

The "Borel Conjecture" for arbitrary ideals \mathcal{J}

Recall the definition of \mathcal{J}^{\star} (for any $\mathcal{J} \subseteq \mathcal{P}\left(2^{\omega}\right)$):

$$
\mathcal{J}^{\star}:=\left\{Y \subseteq 2^{\omega}: Y+Z \neq 2^{\omega} \text { for every set } Z \in \mathcal{J}\right\} .
$$

From now on, assume that \mathcal{J} is a translation-invariant σ-ideal. Then

- $\left[2^{\omega}\right]^{\leq \omega} \subseteq \mathcal{J}^{\star}$: each countable set is \mathcal{J}-shiftable
- \mathcal{J}^{\star} is translation-invariant, but (in general) it is NOT even an ideal

Definition

The \mathcal{J}-Borel Conjecture $(\mathcal{J}$-BC) the statement that there are no uncountable \mathcal{J}-shiftable sets, i.e., $\mathcal{J}^{\star}=\left[2^{\omega}\right]^{\leq \omega}$.

- Borel Conjecture (BC)
- dual Borel Conjecture $(\mathrm{dBC}) \Longleftrightarrow \mathcal{N}-\mathrm{BC} \Longleftrightarrow \mathcal{S M}=\mathcal{N}^{\star}=\left[2^{\omega}\right]^{\leq \omega}$

The Marczewski ideal s_{0}

A set $P \subseteq 2^{\omega}(P \neq \emptyset)$ is perfect iff it is closed and has no isolated points. It corresponds to the branches of a "perfect tree" in $2^{<\omega}$.

Definition

The Marczewski ideal s_{0} is the collection of all $Z \subseteq 2^{\omega}$ such that for each perfect set P, there exists a perfect subset $Q \subseteq P$ with $Q \cap Z=\emptyset$.

- s_{0} is a translation-invariant σ-ideal
- σ-ideal is shown by fusion argument ("Sacks forcing has Axiom A")
- so clearly contains no perfect set (hence no uncountable Borel set)
- $s_{0} \supseteq\left[2^{\omega}\right]^{<2^{N_{0}}}: s_{0}$ contains all "small sets"
- split a perfect P into "perfectly many" (hence $2^{\aleph_{0}}$-many) perfect sets
- $s_{0} \cap\left[2^{\omega}\right]=2^{N_{0}} \neq \emptyset: s_{0}$ necessarily contains sets of size continuum
- can be proved using a maximal almost disjoint family of perfect sets m. a. d. family of perfect sets \cong maximal antichain in Sacks forcing

The Marczewski ideal s_{0}

A set $P \subseteq 2^{\omega}(P \neq \emptyset)$ is perfect iff it is closed and has no isolated points. It corresponds to the branches of a "perfect tree" in $2^{<\omega}$.

Definition

The Marczewski ideal s_{0} is the collection of all $Z \subseteq 2^{\omega}$ such that for each perfect set P, there exists a perfect subset $Q \subseteq P$ with $Q \cap Z=\emptyset$.

- s_{0} is a translation-invariant σ-ideal.
- σ-ideal is shown by fusion argument ("Sacks forcing has Axiom A")
- s_{0} clearly contains no perfect set (hence no uncountable Borel set)
- $s_{0} \supseteq\left[2^{\omega}\right]^{<2^{N_{0}}}: s_{0}$ contains all "small sets"
- split a perfect P into "perfectly many" (hence $2^{\aleph_{0}}$-many) perfect sets
- $s_{0} \cap\left[2^{\omega}\right]^{=2^{\aleph_{0}}} \neq \emptyset: s_{0}$ necessarily contains sets of size continuum
- can be proved using a maximal almost disjoint family of perfect sets m. a. d. family of perfect sets \cong maximal antichain in Sacks forcing

The Marczewski Borel Conjecture (MBC)

We consider the s_{0}-Borel Conjecture:

Definition

The Marczewski Borel Conjecture (MBC) is the statement that there are no uncountable s_{0}-shiftable sets, i.e., $s_{0}{ }^{\star}=\left[2^{\omega}\right] \leq \omega$.

Recall that both BC and dBC fail under CH .

- In fact, MA is sufficient to imply the failure of $B C$ and $d B C$. Replacing MA by PFA, we obtain the failure of MBC:

Proposition

Can MBC be forced?

The Marczewski Borel Conjecture (MBC)

We consider the s_{0}-Borel Conjecture:

Definition

The Marczewski Borel Conjecture (MBC) is the statement that there are no uncountable s_{0}-shiftable sets, i.e., $s_{0}{ }^{\star}=\left[2^{\omega}\right] \leq \omega$.

Recall that both BC and dBC fail under CH .

- In fact, MA is sufficient to imply the failure of BC and dBC . Replacing MA by PFA, we obtain the failure of MBC:

Can MBC be forced?

The Marczewski Borel Conjecture (MBC)

We consider the s_{0}-Borel Conjecture:

Definition

The Marczewski Borel Conjecture (MBC) is the statement that there are no uncountable s_{0}-shiftable sets, i.e., $s_{0}{ }^{\star}=\left[2^{\omega}\right] \leq \omega$.

Recall that both BC and dBC fail under CH .

- In fact, MA is sufficient to imply the failure of BC and dBC.

Replacing MA by PFA, we obtain the failure of MBC:
Proposition
PFA $\Longrightarrow \neg \mathrm{MBC} \quad$ (actually ZFC $\vdash \operatorname{Con}(\neg \mathrm{MBC})$).
What about Con(MBC)?
Can MBC be forced?

The Marczewski Borel Conjecture (MBC)

We consider the s_{0}-Borel Conjecture:

Definition

The Marczewski Borel Conjecture (MBC) is the statement that there are no uncountable s_{0}-shiftable sets, i.e., $s_{0}{ }^{\star}=\left[2^{\omega}\right] \leq \omega$.

Recall that both BC and dBC fail under CH .

- In fact, MA is sufficient to imply the failure of BC and dBC .

Replacing MA by PFA, we obtain the failure of MBC:
Proposition
PFA $\Longrightarrow \neg \mathrm{MBC} \quad$ (actually ZFC $\vdash \operatorname{Con}(\neg \mathrm{MBC})$).
What about Con(MBC)?

Can MBC be forced?

Sacks dense ideals (CH)

Unlike BC and dBC , the status of MBC under CH is unclear...

- Is MBC (i.e., $s_{0}{ }^{\star}=\left[2^{\omega}\right] \leq \omega$) consistent with CH ?
- Or does CH even imply MBC?

I don't know, but in 2010 I obtained a partial result.

Lemma

Assume CH. Let I be a Sacks dense ideal. Then so* © I

Sacks dense ideals (CH)

Unlike BC and dBC , the status of MBC under CH is unclear...

- Is MBC (i.e., $s_{0}{ }^{\star}=\left[2^{\omega}\right] \leq \omega$) consistent with CH ?
- Or does CH even imply MBC?

I don't know, but in 2010 I obtained a partial result.

Definition (CH)

A collection $\mathcal{I} \subseteq \mathcal{P}\left(2^{\omega}\right)$ is a Sacks dense ideal iff

- \mathcal{I} is a (non-trivial) translation-invariant σ-ideal
- \mathcal{I} is dense in Sacks forcing, more explicitly, for each perfect $P \subseteq 2^{\omega}$, there is a perfect subset Q in the ideal, i.e., $Q \subseteq P, Q \in \mathcal{I}$

Sacks dense ideals (CH)

Unlike BC and dBC , the status of MBC under CH is unclear...

- Is MBC (i.e., $s_{0}{ }^{\star}=\left[2^{\omega}\right] \leq \omega$) consistent with CH ?
- Or does CH even imply MBC?

I don't know, but in 2010 I obtained a partial result.

Definition (CH)

A collection $\mathcal{I} \subseteq \mathcal{P}\left(2^{\omega}\right)$ is a Sacks dense ideal iff

- \mathcal{I} is a (non-trivial) translation-invariant σ-ideal
- \mathcal{I} is dense in Sacks forcing, more explicitly, for each perfect $P \subseteq 2^{\omega}$, there is a perfect subset Q in the ideal, i.e., $Q \subseteq P, Q \in \mathcal{I}$

Lemma (CH)

Assume CH. Let \mathcal{I} be a Sacks dense ideal. Then $s_{0}{ }^{\star} \subseteq \mathcal{I}$.

Many Sacks dense ideals (CH)

Lemma (CH; from previous slide)

Assume CH. Let \mathcal{I} be a Sacks dense ideal. Then $s_{0}{ }^{\star} \subseteq \mathcal{I}$.
In other words: $s_{0}{ }^{\star} \subseteq \bigcap\{\mathcal{I}: \mathcal{I}$ is a Sacks dense ideal $\}$.
Can we (consistently) find many Sacks dense ideals?

- the ideal \mathcal{M} of meager sets is a Sacks dense ideal
- the ideal \mathcal{N} of measure zero sets is also a Sacks dense ideal
- the ideal $\mathcal{S N}$ of strong measure zero sets is NOT a Sacks dense ideal

Nevertheless we can "approximate $\mathcal{S N}$ from above" by Sacks dense ideals:
\square

Many Sacks dense ideals (CH)

Lemma (CH; from previous slide)

Assume CH. Let \mathcal{I} be a Sacks dense ideal. Then $s_{0}{ }^{\star} \subseteq \mathcal{I}$.
In other words: $s_{0}{ }^{\star} \subseteq \bigcap\{\mathcal{I}: \mathcal{I}$ is a Sacks dense ideal $\}$.
Can we (consistently) find many Sacks dense ideals?

- the ideal \mathcal{M} of meager sets is a Sacks dense ideal.
- the ideal \mathcal{N} of measure zero sets is also a Sacks dense ideal.
- the ideal $\mathcal{S N}$ of strong measure zero sets is NOT a Sacks dense ideal.

Nevertheless we can "approximate $\mathcal{S N}$ from above" by Sacks dense ideals:

\square

Many Sacks dense ideals (CH)

Lemma (CH; from previous slide)

Assume CH. Let \mathcal{I} be a Sacks dense ideal. Then $s_{0}{ }^{\star} \subseteq \mathcal{I}$.
In other words: $s_{0}{ }^{\star} \subseteq \bigcap\{\mathcal{I}: \mathcal{I}$ is a Sacks dense ideal $\}$.
Can we (consistently) find many Sacks dense ideals?

- the ideal \mathcal{M} of meager sets is a Sacks dense ideal.
- the ideal \mathcal{N} of measure zero sets is also a Sacks dense ideal.
- the ideal $\mathcal{S N}$ of strong measure zero sets is NOT a Sacks dense ideal.

Nevertheless we can "approximate $\mathcal{S N}$ from above" by Sacks dense ideals:

Theorem (CH)

Assume $\mathrm{CH} . \cap\{\mathcal{I}: \mathcal{I}$ is a Sacks dense ideal $\} \subseteq \mathcal{S N}$. Hence (by the Lemma) $s_{0}{ }^{\star} \subseteq \mathcal{S N}$.

Many Sacks dense ideals (CH)

Lemma (CH; from previous slide)

Assume CH. Let \mathcal{I} be a Sacks dense ideal. Then $s_{0}{ }^{\star} \subseteq \mathcal{I}$.
In other words: $s_{0}{ }^{\star} \subseteq \bigcap\{\mathcal{I}: \mathcal{I}$ is a Sacks dense ideal $\}$.
Can we (consistently) find many Sacks dense ideals?

- the ideal \mathcal{M} of meager sets is a Sacks dense ideal.
- the ideal \mathcal{N} of measure zero sets is also a Sacks dense ideal.
- the ideal $\mathcal{S N}$ of strong measure zero sets is NOT a Sacks dense ideal.

Nevertheless we can "approximate $\mathcal{S N}$ from above" by Sacks dense ideals:

Theorem (CH)

Assume CH. $\bigcap\{\mathcal{I}: \mathcal{I}$ is a Sacks dense ideal $\} \subseteq \mathcal{S N}$. Hence (by the Lemma) $s_{0}{ }^{\star} \subseteq \mathcal{S N}$. (Moreover, $s_{0}{ }^{\star} \subseteq$ PerfectlyMeager.)

A nice corollary (CH)

Theorem (CH; from previous slide)

Assume $\mathrm{CH} . \cap\{\mathcal{I}: \mathcal{I}$ is a Sacks dense ideal $\} \subseteq \mathcal{S N}$. Hence (by the Lemma) $s_{0}{ }^{\star} \subseteq \mathcal{S N}$.

Proof.

- $s_{0}{ }^{*} \subseteq \mathcal{M}^{*}$ (remember $S N=\mathcal{M}^{*}$)

- \mathcal{M} (hence $s_{0}{ }^{\star *}$) contains perfect sets, but s_{0} does not

A nice corollary (CH)

Theorem (CH; from previous slide)

Assume $\mathrm{CH} . \bigcap\{\mathcal{I}: \mathcal{I}$ is a Sacks dense ideal $\} \subseteq \mathcal{S N}$. Hence (by the Lemma) $s_{0}{ }^{\star} \subseteq \mathcal{S N}$.

Corollary (CH)

Assume CH. Then $s_{0} \varsubsetneqq s_{0}{ }^{\star \star}$ (i.e., s_{0} is NOT closed under **).
In contrast, CH implies both $\mathcal{M}=\mathcal{M}^{\star \star}$ and $\mathcal{N}=\mathcal{N}^{\star \star}$.

A nice corollary (CH)

Theorem (CH; from previous slide)

Assume CH. $\bigcap\{\mathcal{I}: \mathcal{I}$ is a Sacks dense ideal $\} \subseteq \mathcal{S N}$. Hence (by the Lemma) $s_{0}{ }^{\star} \subseteq \mathcal{S N}$.

Corollary (CH)

Assume CH. Then $s_{0} \varsubsetneqq s_{0}{ }^{\star \star}$ (i.e., s_{0} is NOT closed under ${ }^{\star \star}$).
In contrast, CH implies both $\mathcal{M}=\mathcal{M}^{\star \star}$ and $\mathcal{N}=\mathcal{N}^{\star \star}$.

Proof.

- $s_{0}{ }^{\star} \subseteq \mathcal{M}^{\star}$ (remember $\mathcal{S N}=\mathcal{M}^{\star}$)
- $s_{0}{ }^{\star \star} \supseteq \mathcal{M}^{\star \star}$ and $\mathcal{M}^{\star \star} \supseteq \mathcal{M}$ ("Galois connection")
- \mathcal{M} (hence $s_{0}{ }^{\star \star}$) contains perfect sets, but s_{0} does not.

Thank you for your attention and enjoy the Winter School. . .

